
98 Int. J. High Performance Systems Architecture, Vol. 1, No. 2, 2007

Design of a router for network-on-chip

Jun Ho Bahn,* Seung Eun Lee and
Nader Bagherzadeh
Department of Electrical Engineering and Computer Science,
University of California, Irvine,
Irvine, CA 92697-2625, USA
E-mail: jbahn@uci.edu
E-mail: seunglee@uci.edu
E-mail: nader@uci.edu
*Corresponding author

Abstract: In this paper, we present several enhanced network techniques which are appropriate
for VLSI implementation and have reduced complexity, high throughput and simple routing
algorithm even if basic network problems such as deadlock and livelock are considered.
We develop a new packet definition to support different requirements in an MIMD message
passing architecture and also verify its efficiency by comparing simulation results with various
routing algorithms. Major contributions of this paper are the design of Network-on-Chip (NoC)
architecture adopting a minimal adaptive routing algorithm with competitive performance and
feasible design complexity, thus satisfying all the stated design goals. The proposed adaptive
routing algorithm and NoC architecture offer nearly optimal performance. This can be shown
by comparing with the near-optimal worst-case throughput routing algorithm for 2D-mesh
networks. By providing a uniform way of constructing such network architecture, its scalability
can be easily accomplished. Moreover, this network architecture can be applied to different
SoC developments.

Keywords: network-on-chip; NoC; on-chip interconnection; adaptive routing; mesh network.

Reference to this paper should be made as follows: Bahn, J.H., Lee, S.E. and Bagherzadeh, N.
(2007) ‘Design of a router for network-on-chip’, Int. J. High Performance Systems Architecture,
Vol. 1, No. 2, pp.98–105.

Biographical notes: Jun Ho Bahn received his BS and MS degrees from Seoul National
University, Seoul, Korea in 1993 and 1995, respectively. Currently, he is working towards PhD
in Electrical Engineering and Computer Science at University of California, Irvine, USA. From
1995 to 2000, he was with LG Electronics Research Center at Seoul, Korea, where he was
responsible for the development of HDTV decoder ASIC. From 2002 to 2004, he has been with
NeXilion Inc., Seoul, Korea, where he was involved in several projects such as development of
2D graphic accelerator, DAB decoder and H.264 decoder. His current research interests are on-chip
interconnection network architecture with high-performance and feasible hardware complexity,
networked heterogeneous processing environment, parallelisation of digital signal processing
algorithms such as digital communication or multimedia applications.

Seung Eun Lee received his BS and MS degrees from Korea Advanced Institute of Science and
Technology (KAIST), Daejon, Korea in 1998 and 2000, respectively. Currently he is a PhD
candidate in Electrical Engineering and Computer Science at University of California, Irvine,
USA. From 2000 to 2005, he was a researcher with Korea Electronics Technology Institute
(KETI), where he was involved in the research and development of high performance digital
signal processor and system-on-chip. His current research interests focus on chip multiprocessor
for high performance computing and power-aware on-chip interconnection networks.

Nader Bagherzadeh received his BS, MS in Electrical Engineering and PhD in Computer
Engineering from the University of Texas at Austin in 1977, 1979 and 1987, respectively. From
1980 to 1984, he was with AT&T Bell Laboratories in Holmsel, New Jersey. Since 1988, he has
been with the Department of Electrical Engineering and Computer Science at the University of
California, Irvine. His research interests are in low-power and embedded digital signal processing,
computer architecture, computer graphics and VLSI design.

Copyright © 2007 Inderscience Enterprises Ltd.

Design of a router for network-on-chip 99

1 Introduction

In order to meet the growing computation-intensive
applications as well as low-power requirements for
high-performance systems, the number of computing
resources on a single-chip has increased. Coincidentally,
by adding many computing resources such as CPU, DSP,
specific IPs, etc. to build a System-on-Chip (SoC),
the interconnection among resources becomes another
challenging issue. In most SoC applications, a shared
bus interconnection which needs an arbitration logic to
serialise several bus access requests, is adopted to facilitate
communication among integrated processing units because
of its low-cost and simple control characteristics. However,
such a shared bus architecture does not scale very well
because only one master at a time can utilise the bus
which means all the bus accesses should be serialised by
the arbitrator. Therefore, in such an environment where
the number of bus requesters is large and their required
bandwidth for intercommunication is more than the current
bus capacity, some other interconnection network must be
considered.

Such a scalable bandwidth requirement can be satisfied
by using on-chip packet-switched micronetwork of
interconnects, generally known as Network-on-Chip (NoC)
architecture. The basic idea came from traditional
large-scale multiprocessors and distributed computing
networks. The scalable and modular nature of NoCs and
their support for efficient on-chip communication lead
to NoC-based system implementations. Even though the
current network technologies are well established and
their supporting features are excellent, their complicated
configurations and implementation complexity make it
difficult to be adopted as an on-chip interconnection
methodology. In order to meet typical SoCs or multicore
processing environment, basic modules of network
interconnection like switching logic, routing algorithm
and its packet definition should be light-weight enough to
result in feasible VLSI implementation.

Researchers have made great progresses to develop
network architectures appropriate for on-chip environment.
Depending on switching mechanism, some researchers
developed circuit-based network architectures and others
based on packet-based architectures. For every network
architecture, a routing algorithm should be added to
control the flow of incoming/outgoing data. Routing
algorithms, such as deterministic, oblivious and adaptive
routing algorithms have been proposed. Many researchers
used deterministic or oblivious algorithms such as DOR
(Sullivan and Bashkow, 1977), ROMM (Nesson and
Johnsson, 1995) and O1TURN (Seo et al., 2005) for
simplicity and ease of analysis. Some researchers have
developed better performance routing algorithms even
using adaptive routing algorithms (Chiu, 2000; Dally and
Seitz, 1987; Duato, 1993; Glass and Ni, 1992, 1994;
Hu and Marculescu, 2004). Recently, there have been some
implementation-related works using deterministic routing
algorithms as well as some adaptive routing ones (Goossens
et al., 2005; Lee et al., 2005a,b; Tabrizi et al., 2004).
While a good adaptive routing algorithm can balance
network occupancy and enhance its maximum throughput,

it also suffers from the design cost in terms of additional
sophisticated logic and performance degradation due to the
routing decision time.

In this paper, we propose an NoC architecture with feasible
hardware complexity and well-defined packet protocol.
It can construct deadlock-/livelock-free networks and provide
system-dependent control by configuring router capabilities
as well as defining control-specific features in packet header.
In the next section, a brief introduction of perspective
NoC architecture is presented and the importance of
communication facilities is shown. For the communication
between cores, a packet-based network communication is
adopted. The structure and characteristics of the router
(or switch logic) are described. Also, the basic definition
of packet used in this network architecture is explained.
In Section 3, the brief description of our experiments and
simulation results with several performance comparisons
from different aspects are presented. The implementation
results of the prototype router with FIFOs are provided in
Section 4. Finally, we conclude with a brief summary and
make concluding remarks.

2 A robust NoC architecture

Our approach is to design a scalable, flexible and
reconfigurable multiprocessor platform which meets the
high performance and low-power, resulting in a mesh-based
multiprocessor SoC as shown in Figure 1. Such
a multiprocessor SoC includes multiple programmable
processors, memory modules and several specific IPs as
Processing Elements (PE) which are totally dependent on
the required performance.

2.1 Router architecture

For the communication between several PEs, a network-like
interconnection is adopted which requires router insertions
in-between each PE. In order to address the delivery of data in
communication, an adaptive routing algorithm and associated
router architecture are proposed. As shown in Figure 1, for
deadlock freedom, two disjoint vertical channels are provided
instead of using virtual channels wihch have been adopted in
several router designs before (Dally and Seitz, 1987; Duato,
1993). Though our approach to deadlock freedom requires
additional resources to build two physical channels, it can
reduce the complexity in routing algorithm which should
control multiplexing of virtual channels to escape deadlock
situation if virtual channels are utilised for this purpose.
Additionally, the overhead to add physical channels can
counterbalance the cost to allocate virtual channel buffers
and associated control logics. Therefore, our approach of
providing physical channels in vertical direction is beneficial
in its own way (Table 1). The use of vertical channels is
constrained by the direction of delivered data. That is, each
vertical channel is exclusively used depending on west or
east-bounded direction of delivered packet. To distinguish
their occupations, each vertical channel is denoted by
N1/S1 for east-bounded and N2/S2 for west-bounded,
respectively. Also, the data from the internal PE connected
with router use separate injection ports, IntL-in and IntR-in,

100 J.H. Bahn, S.E. Lee and N. Bagherzadeh

Figure 1 High-level view of prospective NoC architecture

MS
Host

I/F
(HI)

IP1

Memory
Station

(MS)

Host
I/F

(HI)

Processing
Element

(PE)

Processing
Element

(PE)

Processing
Element

(PE)

Processing
Element

(PE)

Host
I/F

(HI)

Memory
Station

(MS)

Memory
Station

(MS)

Host
I/F

(HI)

PE Router

Processor Core
(ARM / MIPS etc)

Program
RAM

Data
RAM

NI

Memory
Station

(MS)

IP2

IP3

IP4

IP x
Router

Specific IP
(FFT, Viterbi or
Turbo coder)

Network Interface

Router

Data RAM

NI

Memory Controller

depending on their direction of destination node. As a result,
available routing ports are grouped as {W-in, N1, E-out, S1,
IntR-in} and {E-in, N2, W-out, S2, IntL-in} where N1/S1 or
N2/S2 represent incoming/outgoing port simultaneously, -in
represents an incoming port and -out represents an outgoing
port for the given channel, respectively.

Table 1 Priority assignment on ports

Outports Inports

N1-out S1-in, W-in, IntR-in
E-out S1-in, W-in, N1-in, IntR-in
S1-out W-in, N1-in, IntR-in
N2-out E-in, S2-in, IntL-in
S2-out N2-in, E-in, IntL-in
W-out N2-in, E-in, S2-in, IntL-in
Int-out N1-in, N2-in, E-in, S1-in, S2-in, W-in

2.2 Packet definition

To get the proper bandwidth in interconnection networks,
we have developed a 64-bit wide communication network.
In order to support several different application needs, we
further define three different categories of packet types,
that is, single data transfer, single command transfer and
block program/data transfer. Through single data transfer,
single 32-bit value can be transferred between source and
destination PE (see Figure 2(a)). To ease the router packet
control, the address of destination PE is represented by
relative distance of horizontal (X-dir) and vertical (Y-dir)
direction in signed magnitude values.

To give some flexibility for handling the delivered data
at the destination PE, data_ID is provided. The original
purpose of data_ID is to help destination PE identify the
delivered data. For that purpose, it consists of data origin
(sourcePE_addr) and substantial identification number

(subdata_ID) which is given by high-level application.
Different from the representation of destPE_addr, source
PE_addr uses original number for each PE which is used for
computing a relative distance between PEs.

Additionally to provide some information for fixing
out-of-order delivery in the same source and destination
pair transfer, sequence number (seq_num) is allocated in
subdata_ID field. This number is circularly added by 1 only
when the packet containing same source/destination PE pair
is issued at source PE. Therefore, source PE contains some
amount of information regarding source/destination PE pair
to control this seq_num. The way to address out-of-order
delivery is out of the scope of this paper.

Another packet category is a single command transfer.
By using single command transfer, we can build some
control specific protocols either between PEs or between
a PE and a router. Figure 2(b) shows the basic definition
of single command transfer packet. cmdType represents
a type of transmitted command. cmdType is used for
defining a characteristic of the delivered command such
as where a delivered command is applied. If cmdType is
0, the corresponding command is applied to the router for
configuring the router control. Otherwise, the command
is reserved for destination PE, which can be further
defined depending on various requirements in control-related
operations. By combining both cmd_Opcode and 32-bit
operand field, various control-related operations can be
created depending on the specification of destination PE.
Therefore, this single command transfer packet provides
flexibility to add user-defined capabilities for communication
purpose if needed.

The last category is for transferring multiple data,
that is, block data. In some cases, multiple data transmission
has much better performance in terms of communication
overhead than single data transmission. Precisely in block
transfer, two different block transfers are defined. One is

Design of a router for network-on-chip 101

Figure 2 Packet formats: (a) single data transfer packet; (b) single command transfer packet; (c) block program transfer packet and
(d) block data transfer packet

32-bit data field

data_ID

seq_num00 X-dir Y-dir subdata_IDsourcePE_addr

313947515561 032404852566263

destPE_addr

32-bit operandcmd_OpcodecmdType01

destPE_addr

X-dir Y-dir

3147515561 0324852566263

start address for storing data in dest_addr PE# of trasferred data

program_data[0] program_data[1]

program_data[N−1] or program_data[N−2] program_data[N−1] or Null Data

XXXXXX10

destPE_addr

X-dir Y-dir

3147515561 0324852566263

of transferred data

data[0] data[1]

data[N−1] or data[N−2] data[N−1] or Null Data

transType11 groupPE_addr0

destPE_addr

X-dir Y-dir

data_ID

subdata_IDsourcePE_addr

313947515561 032404852566263 2324

groupPE_addr1

1516

(a)

(b)

(c)

(d)

block program transfer which is used for programming each
PE at the initial stage. The other is block data transfer
generally used for multiple data transmissions between
PEs. Figure 2(c) and (d) show the packet format of block
program transfer and block data transfer, respectively.
Block program/data transfer packet is composed of one
packet header and following packets containing a pair of
32-bit program/data. Packet header contains the number
of transferred 32-bit data and a control parameter such
as start address of program memory in destination PE for
storing delivered block program data. From the 16-bit field
representing the number of transferred 32-bit program/data,
the number of following 64-bit program/data packets can
be decided. Because the number of 32-bit program/data is
assigned in packet header, the number of following 64-bit
program/data packets is computed as �(Np +1)/2� where Np

is the number of transferred program/data.

3 Experimental results

3.1 Evaluation methodology

In order to evaluate the router performance, we developed the
router model written in System-C because System-C is a C++
class library and a methodology that we can use to effectively
create a concurrent system-level model of router architecture
and simulate to validate and explore different routing
algorithms. For the performance evaluation in different

routing algorithms, we select Dimension-Ordered Routing
(DOR) (Sullivan and Bashkow, 1977), ROMM (Nesson and
Johnsson, 1995) and O1TURN (Seo et al., 2005) algorithms
in addition to our minimal adaptive routing one. All the
network simulations were executed for 100,000 cycles.

For the measurement of throughput and adjusting
incoming traffic, we adopted a standard interconnection
network measurement setup (Dally and Towles, 2004) where
the packet generation is placed in front of an infinite source
queue and an input timing of each packet is measured
whenever it is generated. Without the infinite buffer at source
packet generators, the measured latency does not apply real
network environment such as some delay caused by packet
contention, network congestion and so on.

To get the various measurement results, four different
traffic patterns such as uniform random, bit-complement,
matrix-transpose and bit-reverse traffic patterns are used.
These four traffic patterns are normally used to compare the
performance of each routing algorithm.

3.2 Software simulation results in network
performance

The simulation results are presented in Figures 3 and 4.
The graphs in Figure 3 show the average latency of each
routing algorithm in two-dimensional 4×4 mesh topology for
different traffic patterns. Figure 4 shows the average latency
of each routing algorithm in an 8 × 8 mesh topology for

102 J.H. Bahn, S.E. Lee and N. Bagherzadeh

Figure 3 Router performance in 4×4 mesh: (a) uniform random traffic; (b) bit-complement traffic; (c) matrix-transpose
traffic and (d) bit-reverse traffic

0

01

02

03

04

05

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

)elcyc/edon/tilf(ciffarT dereffO

sruo
X-ROD
MMOR
NRUT1O

0

01

02

03

04

05

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

)elcyc/edon/tilf(ciffarT dereffO

sruo
X-ROD
MMOR
NRUT1O

0

01

02

03

04

05

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

)elcyc/edon/tilf(ciffarT dereffO

sruo
X-ROD
MMOR
NRUT1O

0

01

02

03

04

05

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

)elcyc/edon/tilf(ciffarT dereffO

sruo
X-ROD
MMOR
NRUT1O

(a)

(c)

(b)

(d)

Figure 4 Router performance in 8×8 mesh: (a) uniform random traffic; (b) bit-complement traffic; (c) matrix-transpose
traffic and (d) bit-reverse traffic

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

)elcyc/edon/tilf(ciffarT dereffO

sruo
X-ROD
MMOR
NRUT1O

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

)elcyc/edon/tilf(ciffarT dereffO

sruo
X-ROD
MMOR
NRUT1O

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

)elcyc/edon/tilf(ciffarT dereffO

sruo
X-ROD
MMOR
NRUT1O

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

)elcyc/edon/tilf(ciffarT dereffO

sruo
X-ROD
MMOR
NRUT1O

(a) (b)

(c) (d)

different traffic patterns. Each graph includes four curves:
ours(+), DOR-X(×), O1TURN(∗) and ROMM(�). Each
graph represents offered traffic (flit/node/cycle) in x-axis
and average latency (cycles) in y-axis. For any given graph,
the average latency is plotted from low load to high load.

Similar to results in the literature (Seo et al., 2005), average
latency is not increased before a certain point of saturation
where network packets experience contention.

As shown in Figure 3, our routing algorithm shows same or
better performance for all traffic patterns in two-dimensional

Design of a router for network-on-chip 103

4 × 4 mesh topology. For every traffic pattern, it sustains
highest offered traffic amount with the lowest average latency.

At the 8 × 8 mesh topology, the performance results for
the given traffic patterns are varied as Figure 4. Though
ours has slightly lower performance than O1TURN at

each traffic pattern except matrix-transpose traffic pattern,
it still shows competitive performance. However, at the
given amount of offered traffic before saturation point,
it shows best performance with respect to the average
latency.

Figure 5 Router performance in 4×4 mesh with varying FIFO buffer size: (a) uniform random traffic; (b) bit-complement traffic;
(c) matrix-transpose traffic and (d) bit-reverse traffic

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

)elcyc/edon/tilf(ciffarT dereffO

2 = htpeD reffuB
4 = htpeD reffuB
8 = htpeD reffuB

61 = htpeD reffuB
23 = htpeD reffuB
46 = htpeD reffuB
fnI = htpeD reffuB

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

)elcyc/edon/tilf(ciffarT dereffO

2 = htpeD reffuB
4 = htpeD reffuB
8 = htpeD reffuB
61 = htpeD reffuB
23 = htpeD reffuB
46 = htpeD reffuB
fnI = htpeD reffuB

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

)elcyc/edon/tilf(ciffarT dereffO

2 = htpeD reffuB
4 = htpeD reffuB
8 = htpeD reffuB
61 = htpeD reffuB
23 = htpeD reffuB
46 = htpeD reffuB
fnI = htpeD reffuB

(a) (b)

(c) (d)

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1

)selcyc(ycnetaL egarev
A

)elcyc/edon/tilf(ciffarT dereffO

2 = htpeD reffuB
4 = htpeD reffuB
8 = htpeD reffuB
61 = htpeD reffuB
23 = htpeD reffuB
46 = htpeD reffuB
fnI = htpeD reffuB

Figure 6 Router performance in 8×8 mesh with varying FIFO buffer size: (a) uniform random traffic; (b) bit-complement traffic;
(c) matrix-transpose traffic and (d) bit-reverse traffic

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

)elcyc/edon/tilf(ciffarT dereffO

2 = htpeD reffuB
4 = htpeD reffuB
8 = htpeD reffuB
61 = htpeD reffuB
23 = htpeD reffuB
46 = htpeD reffuB
fnI = htpeD reffuB

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

)elcyc/edon/tilf(ciffarT dereffO

2 = htpeD reffuB
4 = htpeD reffuB
8 = htpeD reffuB

61 = htpeD reffuB
23 = htpeD reffuB
46 = htpeD reffuB
fnI = htpeD reffuB

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

)elcyc/edon/tilf(ciffarT dereffO

2 = htpeD reffuB
4 = htpeD reffuB
8 = htpeD reffuB
61 = htpeD reffuB
23 = htpeD reffuB
46 = htpeD reffuB
fnI = htpeD reffuB

0

02

04

06

08

001

0 1.0 2.0 3.0 4.0 5.0

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

)elcyc/edon/tilf(ciffarT dereffO

2 = htpeD reffuB
4 = htpeD reffuB
8 = htpeD reffuB
61 = htpeD reffuB
23 = htpeD reffuB
46 = htpeD reffuB
fnI = htpeD reffuB

(a) (b)

(c) (d)

104 J.H. Bahn, S.E. Lee and N. Bagherzadeh

Figures 5 and 6 show the performance of router in average
latency depending on the size of buffers between each
port. In this experiment, most simulation environments are
similar except varying buffer size between each routing link.
Regarding the FIFO allocation, the experimental results show
that the increase of the FIFO size does not always improve
the throughput as a performance metric. The router shows
the best performance when the FIFO size is the same to the
packet length with all other traffic patterns except the uniform
random traffic one. In case of matrix transpose, bit-reverse
and bit complement traffic patterns, the traffic makes hot-
spot nodes that suffer from heavy traffic in mesh network
and the throughput is determined by the latencies of the hot-
spot nodes. Even though the adaptive routing algorithm has
an ability to balance the traffic load across channels, the
alternative path decision could be made under the congestion
in a higher priority channel. If the higher priority output
channel is connected to the sufficiently large FIFO buffer,
then the lower priority output channel is not utilised, resulting
in the reduced channel utilisation. Therefore, the bigger
FIFO allocation in network does not always enhance the

performance of the router. From this experiment and the
associated analysis, we can conclude that allocating FIFO
size with the same number of flits in a packet has the optimal
performance in terms of maximum throughput.

3.3 Prototype router design

The overall block diagram of the prototype router is shown
in Figure 7. There is an input FIFO per input port and
each output port has the associated arbiter to choose the
proper input data among the given incoming data from
each candidate input port. The router is composed of
three architectural blocks; right, left and internal router.
As mentioned in the previous explanation of router
architecture, the router provides two separate routing path
sets depending on the traversing direction. While the right
router block handles the traffic in one port set {W -in, N1,
E-out, S1, IntR-in} where each traffic is headed for right
direction, the left router block controls the traffic in the other
port set {E-in, N2, W -out, S2, IntL-in} where the traffic is
bounded for left direction. Based on the functionality, the left

Figure 7 Block diagram or the prototype router

W Input

t
u

p
nI

1
S

Int R Input

t
u

pt
u

O
1
S

E Output

W Input

t
u

p
nI

2
S

t
u

p
nI

2
N

t
u

p
nI Lt

nI

N2 Output

W output

S2 Output

N

W

S

E

S

W

INT

E

S1 S2

Int R

Int L

T
NI

Internal Router

Left Router

N1 N2

N

Figure 8 Detail block diagram of an output going router for each output port

HPU

FSM

Router

block
no. blk

in1 en
in2 en
in3 en

]
0:

2[tc
el

es

block mode

S
U
B

M
U
X

OTUPUT

/WEN

FULL

IN 1

IN 2

IN 3

Design of a router for network-on-chip 105

and right portions of the router are symmetric. The internal
router supports the additional interface to an EU.

The detail block diagram of an outgoing router for each
output port is shown in Figure 8. Each incoming packet is
directed to the Header Parsing Unit (HPU) per each output
port. The HPU generates a set of routable input entries in
order of the input priority by looking up the destination
address in the header field. Also, it determines the request
of block transfer for the given incoming packet. When the
output port is available (by referencing FULL signal), the
router chooses the input packet for corresponding output port
among the set of routable input entries provided by the HPU.
If two or more packets arrive simultaneously, the arbiter will
decide one packet according to their priority.

In order to estimate hardware costs, a router for 2 mesh
network has been designed at Register-Transfer Level
(RTL) in Verilog™ HDL. A logic description of our router
component has been obtained using Synopsys™ v-2003.12
and TSMC™ 90 nm process technology. Table 2 shows
characteristics of the router and the corresponding FIFO.
In this design, we assume a 64-bit channel width and the
depth of a FIFO to 4. The simulation results demonstrate
the maximum bandwidth of 8.64 Gbps per each direction.
The bandwidth of the router makes this router architecture
feasible for NoC realisation.

Table 2 Synthesis results for prototype router and FIFO

Router FIFO(depth = 4)

Operating voltage 1.0 V 1.0 V
Operating frequency 432 MHz 1.85 GHz
Gate counts 6059 2970
Area 17, 101 µm2 8383 µm2

Dynamic power 4.4 mW 5.3 mW
Leakage power 168.1 µW 77.3 µW

From a technological viewpoint, the overall router including
the input FIFOs occupies an area of approximately
84.5 µm2(= router_area + FIFO_area × 8) using a 90 nm
design rules. If it is integrated within NoC using the same
technology, total area overhead imposed by the router would
not be the dominant factor.

4 Conclusion

We have developed a new NoC architecture with a
minimal adaptive router and associated packet protocols.
Its competitive performance has been shown by various
simulations with System-C model and comparison with
other routing algorithms. Finally, our prototype design
demonstrates the hardware feasibility for interconnection of
a multicore architecture.

References

Chiu, G. (2000) ‘The odd-even turn model for adaptive routing’,
Transactions on Parallel and Distributed Systems, Vol. 11,
No. 7, pp.729–738.

Dally, W.J. and Seitz, C.L (1987) ‘Deadlock-free message routing
in multiprocessor interconnection networks’, IEEE Transactions
on Computer, Vol. C-36, No. 5, pp.547–553.

Dally, W.J. and Towles, B. (2004) Principles and Practices
of Interconnection Networks, San Francisco, CA: Morgan
Kaufmann Publishers.

Duato, J. (1993) ‘A new theory of deadlock-free adaptive routing
in wormhole networks’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 4, No. 12, pp.1320–1331.

Glass, C.J. and Ni, L.M. (1992) ‘Maximally fully adaptive routing
in 2D meshes’, Proceedings of 1992 International Conference
Parallel Processing, pp.101–104.

Glass, C.J. and Ni, L.M. (1994) ‘The turn model for adaptive
routing’, Journal of ACM, Vol. 31, No. 5, pp.874–902.

Goossens, K., Dielissen, J. and Radulescu, A. (2005) ‘Æthereal
network on chip: concepts, architectures, and implementations’,
IEEE Design and Test of Computers, Vol. 22, No. 5, pp.414–421.

Hu, J. and Marculescu, R. (2004) ‘DyAD – smart routing for
network-on-chip’, Proceedings of the 41st Annual Conference
on Design and Automation, pp.260–263, ACM Press.

Lee, S., Lee, K., Song, S. and Yoo, H. (2005a) ‘Packet-switched
on-chip interconnection network for system-on-chip
applications’, IEEE Transactions on Circuit and Systems-II:
Express Briefs, Vol. 52, No. 6, pp.308–312.

Lee, S., Lee, K. and Yoo, H. (2005b) ‘Analysis and implementation
of practical, cost-effective networks on chips’, IEEE Design and
Test of Computers, Vol. 22, No. 5, pp.422–433.

Nesson, T. and Johnsson, S.L. (1995) ‘ROMM routing on mesh and
torus networks’, Proceedings of the 7th Annual ACM symposium
on Parallel Algorithms and Architectures, pp.275–287,
ACM Press.

Seo, D., Ali, A., Lim, W. and Rafique, N. (2005) ‘Near-optimal
worst-case throughput routing for two-dimensional mesh
networks’, Proceedings the 32nd International Symposium on
Computer Architecture (ISCA’05), June, pp.432–443.

Sullivan, H. and Bashkow, T.R. (1977) ‘A large scale, homogeneous,
fully distributed parallel machine’, Proceedings of the 4th Annual
ACM Symposium on Parallel Algorithms and Architecture,
pp.105–117, ACM Press.

Tabrizi, N., Bagherzadeh, N., Kamalizad, A.H. and Du, H.
(2004) ‘MaRS: a macro-pipelined reconfigurable system’,
ACM Computer Frontiers, pp.343–349.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

