Problem 1 (10 points):

The closed-loop amplifier circuit shown in Fig. 1 uses an op-amp with finite open-loop gain A. You can assume that the op-amp input currents are both zero.

(a) If the dc component of V_{in} is 1 V, find the dc component of V_{out}.

(b) Assuming that R_1 is large enough to be considered an open circuit, find the expression for the closed-loop transfer function $V_{out}(j\omega)/V_{in}(j\omega)$.

(c) From your answer in part (b), show that for sufficiently large A the closed-loop transfer function depends only on the ratio of resistors C_2/C_1.

(d) If both C_1 and C_2 are decreased by 10%, how will the transfer function found in part (c) be affected?

![Fig. 1](image-url)
Problem 2 (10 points):

The circuit shown in Fig. 2 is to be used as a high-quality current source.

(a) Find I_{OUT} assuming that the op-amp is ideal.

(b) What is the lowest dc voltage that can be sustained at the current source output while keeping the transistor in the saturation region? Express your answer in terms of the transistor $(V_{GS} - V_t)$ and other relevant parameters.

(c) Now assuming that the op-amp has a finite gain A_0, find the output resistance of this current source in terms of the transistor small-signal parameters and A_0.

![Fig. 2](image-url)
Problem 3 (10 points):

The circuit shown in Fig. 3 is a differential amplifier. Assume $\beta = \infty$ and for the BJTs. Consider finite values of r_o for transistors Q_3, Q_{2C}, and Q_{2D} but ignore the r_o of the other transistors. Assume that transistor Q_3 has a dc base voltage so that it conducts dc collector current I_{EE}.

(a) Find the approximate dc currents in each of the transistors.

(b) Find the differential-mode gain in terms of transistor small-signal parameters and resistor values.

(c) Find the common-mode gain in terms of transistor small-signal parameters and resistor values.

(d) Find the common-mode rejection ratio.

![Figure 3](image-url)