High Bandwidth Tilt Measurement Using Low-Cost Sensors

John Leavitt, Student Member, IEEE, Athanasios Sideris, Member, IEEE, and James E. Bobrow, Member, IEEE.

Abstract—In this paper a state estimation technique is developed for sensing inclination angles using low-cost sensors. A low bandwidth tilt sensor is used along with an inaccurate rate gyro and a low-cost accelerometer to obtain the measurement. The rate gyro has an inherent bias along with sensor noise. The tilt sensor uses an internal pendulum and therefore has its own slow dynamics. These sensor dynamics were identified experimentally and combined to achieve high bandwidth measurements using an optimal linear state estimator. Potential uses of the measurement technique range from robotics, to rehabilitation, to vehicle control.

Index Terms—inclinometer, orientation estimation, angle gyro, pose estimation

I. INTRODUCTION

MANY modern mechanical control systems use orientation feedback relative to an inertial reference frame. For systems connected to the ground by a hinge or revolute joint, measuring orientation is not difficult since an encoder can be attached between ground and the rotating link to directly give orientation. However for any untethered system, or one that can move about freely in space, determining its orientation is not trivial. In our case, we are designing a hopping robot with a single actuator, capable of balancing despite inherent open-loop instability [8]. This robot requires accurate orientation and rate feedback at a relatively high bandwidth in order to achieve stable balance control. In this paper we develop a state-space estimation approach that produces a high bandwidth orientation or tilt signal using inexpensive components. We focus our attention on planar motions, since sensing in 3-dimensions first requires sensing in the plane [9].

One option for planar orientation measurement is the use of a tilt sensor, such as a pendulum type inclinometer, but these sensors have their own dynamics with limited bandwidth and therefore cannot provide the correct tilt information at high frequencies. Another approach is to use a gyroscope to infer the tilt angle of the robot. In theory, integrating the angular velocity output of a gyroscope (hereafter referred to as a gyro or rate gyro) should provide an accurate tilt angle, even when the system is moving quickly. In practice, low-cost gyros have an unknown bias (offset) and/or scaling in their output, as well as signal noise. Integrating the gyro output results in a angle estimate plus a drift term. This means that it is not practical to sense inclination angle from a gyro alone.

Another approach is to use a 2-axis accelerometer to measure the direction of gravity in a rotating reference frame [10]. Because accelerometers have a relatively high bandwidth and low cost, they are often used in this manner as tilt sensors. In practice, however, we have found them to be sensitive to vibrations, and relatively difficult to use since they require a nonlinear arctangent evaluation in the control loop. Ojeda and Borenstein [7] have used accelerometers as tilt sensors to reset their gyros when their robot is not moving. They also found that vibrations during motion were problematic. More recently, Rehbinder and Hu [6] developed a switching state-estimator for sensing attitude in three dimensions. Their approach combines gyro and acceleration measurements, and switches the estimator rely mostly on the gyro signal when the magnitude of the acceleration vector is high. They noted the problem of a bias signal from the gyros, but were not able to eliminate it. Our approach solves this problem with the use of an tilt sensor which provides enough extra information for the state estimator to determine the bias on-line.

The state estimator developed in this work combines data from a gyro, a pendulum inclinometer, and a 2-axis accelerometer to estimate the tilt angle. We used a US Digital T2-7200-T optical inclinometer (cost $100) [1], along with a Murata ENC-03JA piezo gyrooscope (cost $50)[2] and a Memsic MXA2100A accelerometer (cost $8)[3], as shown in Figure 1. At first glance, our approach is similar to that used by Baerveldt and Klang [4] and by Rehbinder and Hu [5]. However, we found that none of the existing methods produced the accuracy or bandwidth that we required. Baerveldt and Klang assume the inclinometer is a first order low-pass filter with time constant $\tau = 0.53$ sec. This model is shown to be good for lower frequency motions (in their case 0.15 to 1.5 Hz), but the first order assumption is not valid at higher frequencies. Rehbinder and Hu use a nonlinear observer to estimate attitude, but also model their inclinometer as a first order low-pass filter. Again their observer is shown to perform well at frequencies around 1 or 2 Hz. Because our robot systems potentially operate at frequencies approaching 5 Hz, we needed to develop a significantly improved state estimation technique.

Our method has four main differences to previous approaches: (1) a higher fidelity model for the inclinometer was developed using both a physics-based model and a frequency domain system identification technique; (2) an optimal state estimator (Kalman filter) is used that continuously combines the measurements to obtain more accurate angle and angular rate information; (3) the inherent bias of the gyroscope is identified, and compensated for, on-line; and (4) translational acceleration is explicitly accounted for in the tilt sensing state estimator.
II. Modelling and Performance Characteristics of the Sensors

A. Inclinometer

The US Digital optical inclinometer measures the angular position of a pendulum relative to its housing. An encoder with a resolution of 7200 counts/revolution (after quadrature) is used to track the position of the pendulum. Figure 2 shows a schematic representation of the inclinometer. Because the pendulum has its own dynamics, the desired inclination angle, θ_1, output from this sensor is only accurate at low frequencies. In order to investigate the dynamics of our inclinometer, we mounted a hinge joint to a fixed table (see Figure 3) and measured the true angle of the pendulum with an optical encoder. We then oscillated the joint with an increasing frequency “chirp signal.” The chirp input starts at 0.25 Hz and ends at approximately 4.6 Hz over a period of 107 seconds. Sensor outputs were sampled at 500 Hz. The inclinometer shown in Figure 3 was mounted at the axis of rotation so that it did not undergo any base acceleration during the system identification process. Figure 4 shows the output of the inclinometer as a function of time as the actual inclination angle (measured with an encoder and used for comparison only) varies with the increasing frequency chirp. At high frequencies, the inclinometer exhibits distortion in both magnitude and phase.

In order to obtain the dynamic model for the system, consider the tilt sensor to be a simple pendulum with damping, and assume that there is a translational acceleration of the base defined by (\dot{x}, \ddot{y}) as shown in Figure 2. Let θ be the actual angle of the sensor and θ_1 be the pendulum angle, which is the tilt sensor output, as seen in Figure 2. The differential equation for the system is

$$J(\ddot{\theta} - \dot{\theta}_1) = c\dot{\theta}_1 - mgl \sin(\theta - \theta_1) - ml(\dot{y} \sin(\theta - \theta_1) + \dot{x} \cos(\theta - \theta_1))$$

for some damping coefficient c, length from pivot to mass center l, mass m, and inertia about the pendulum pivot J. Assuming small $\theta - \theta_1$, $\sin(\theta - \theta_1) \approx \theta - \theta_1$, and $\cos(\theta - \theta_1) \approx 1$. We further assume that the nonlinear term $\dot{y}(\theta - \theta_1)$ that results from these assumptions is negligible. The differential equation simplifies to

$$J(\ddot{\theta} - \dot{\theta}_1) = c\dot{\theta}_1 - mgl(\theta - \theta_1) - ml\ddot{x}.$$

If we define $\alpha_1 \equiv c/J$, $\alpha_2 \equiv mgl/J$, $\gamma_1 \equiv \alpha_2/g$, and take $\beta_0 = 1$, $\beta_1 = 0$, $\beta_2 = \alpha_2$ the transfer function representation of the linearized equations of motion for this system has the form

$$\Theta(s) = \frac{\beta_0 s^2 + \beta_1 s + \beta_2}{s^2 + \alpha_1 s + \alpha_2} \Theta(s) + \frac{\gamma_1}{s^2 + \alpha_1 s + \alpha_2} X_a(s), \quad (1)$$

where $\Theta(s)$, $\Theta(s)$, and $X_a(s)$ are the Laplace transforms of the $\theta(t)$, $\dot{\theta}(t)$, and $\ddot{x}(t)$ signals respectively.

B. Gyroscope and Accelerometer

In order to investigate the dynamic characteristics of the Murata gyroscope, we mounted it to the same test apparatus...
as used for the inclinometer experiments and applied the same chirp test signal. The output of a Murata gyro (approximately scaled to units of rad/sec) is shown in the top plots of Figure 5. Also shown in the figure is the signal obtained from a backward finite difference of the joint encoder signal. This signal was also passed through a first-order low-pass filter with a cutoff frequency of 20 Hz. From the plots, it appears that a bias of about 3 rad/sec is present in the gyro output signal. We then subtracted this value from the gyro signal, and integrated this difference to obtain the bottom plots shown in Figure 5. The plots show a significant error in magnitude from the true angle (as measured by the encoder). It is clear that the gyro sensor introduces a drift to the signal due to the unknown bias term, and this bias might be slowly varying with time.

In order to obtain the translational acceleration \ddot{x} in (1), we used a 2-axis accelerometer made by Memsic. The bandwidth for this device is 30 Hz.
III. OBSERVER DESIGN FOR ACCURATE TILT MEASUREMENT

![Block diagram of estimation system with no noise input. The measured signals are the outputs of the gyroscopes \(\omega_g \), the accelerometer \(\ddot{x} \) and the tilt sensor \(\theta_t \).](image)

In this section, we construct an optimal observer (Kalman filter) that considerably improves tracking of the tilt angle \(\theta \) by combining the inaccurate measurements of the gyro and tilt sensors. The observer reconstructs the states of the angle measuring system as depicted in Figure 6. In this system, the tilt sensor is described by the second-order transfer function (1). The observable-canonical-form state space realization for (1) can be written as follows:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\end{bmatrix} =
\begin{bmatrix}
-\alpha_1 & 1 \\
-\alpha_2 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
+ \begin{bmatrix}
\beta_1 - \beta_0 \alpha_1 \\
\beta_2 - \beta_0 \alpha_2 \\
\end{bmatrix} \theta + \begin{bmatrix}
0 \\
\gamma_1 \\
\end{bmatrix} \ddot{x}
\]

\[\theta_t = \begin{bmatrix} 0 & \beta_0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \delta \\ \theta \\ x_1 \\ x_2 \end{bmatrix} + v_t,
\]

where we also added measurement noise \(v_x \) to the accelerometer signal \(\ddot{x} \).

This system is of the standard form:

\[
\dot{\hat{z}} = A \hat{z} + B u + B_v v \\
\theta_t = C \hat{z} + v_t
\]

with \(z = [\delta \; \theta \; x_1 \; x_2]^T \), \(u = [\omega_g \; \dot{x}]^T \), \(v = [v_x \; v_b \; v_g]^T \), and \(A, B, B_v, \) and \(C \) defined in the obvious way. Note that in this formulation, the unknown bias \(\delta \) and the tilt angle \(\theta \) are states of the system. The inputs are the measured gyro signal \(\omega_g \), the measured acceleration signal \(\ddot{x} \), and the measurement noises \(v_{x}, v_b, v_g \), and \(v_t \). Finally, the output of the system is the measured inclinometer signal \(\theta_t \). Next, we consider a standard state estimator (observer) of the form:

\[
\dot{\hat{z}} = A \hat{z} + K (\theta_t - C \hat{z}) + B u
\]

Selecting the gain vector \(K \) such that \(A - KC \) is an asymptotically stable matrix guarantees that the state reconstruction error \(z - \hat{z} \) remains bounded, and in the absence of the noise signals, that \(z - \hat{z} \) converges asymptotically to 0. We actually considered an optimal observer (Kalman filter) that minimizes the mean square tracking error \(E[(z - \hat{z})^2(z - \hat{z})] \) and can be readily designed by considering the dual state regulator problem (for example, see [11]) and using MATLAB’s lqr command. In the cost function of the latter problem, the state weighting matrix \(Q = \text{diag} \{W_{\theta}^2, \alpha^2W_{\hat{x}}^2, \gamma_1^2W_{x_2}^2, \gamma_2^2W_{x_2}^2\} \) and the control weighting matrix \(R = W_t^2 \), where \(W_{\theta}, W_{\hat{x}}, \) and \(W_t \) are the RMS (root mean square) values of the bias \(v_b \), gyro \(v_g \), accelerometer \(v_x \), and tilt sensor \(v_t \) noises respectively, all assumed to be modelled as white noise. The values of \(W_{\theta}^2 = 1.0, W_{\hat{x}}^2 = 0.866, W_{x_2}^2 = 1.376, \) and \(W_t^2 = 0.5 \) provide a reasonable such trade-off, resulting in the observer gains \(K = [-1.4142 \; 2.2286 \; 44.8444 \; 212.6269]^T \).

IV. SYSTEM IDENTIFICATION OF INCLINOMETER DYNAMICS

From (5), it is clear that the observer acts as a filter that combines the imperfect gyro \(\omega_g \), inclinometer \(\theta_t \) and accelerometer \(\ddot{x} \) signals to produce an improved estimate of the tilt angle \(\theta \) in terms of the estimated state \(\hat{z} \). Note that the observer automatically estimates the gyro bias \(\delta \) in terms of \(\hat{z}(1) \) and compensates for it. However, in order to use this scheme, we need to have the observer parameters \(\alpha_1, \alpha_2, \beta_0, \beta_1, \) \(\gamma_1 \) (recall that \(\gamma_1 = \alpha_2/g \)), that is, the inclinometer transfer function in (1) from \(\theta \) to \(\theta_t \). We employ a frequency domain identification technique to obtain this transfer function. More specifically, the output of the integrator/inclinometer system in Figure 6 is \(\theta_t \), while the inputs to this system...
(neglecting measurement noise) are \(\ddot{x} \) and \(\omega \), with the latter being related from (3) to the gyro measurement \(\omega_g \) by:

\[
\omega = \alpha \omega_g - \delta.
\]

For the moment, we assume that \(\delta = 0 \) and \(\alpha = 1 \), i.e. that \(\omega = \omega_g \), and we will shortly see that the value of the bias \(\delta \) does not affect the frequency domain identification process, while the actual scaling \(\alpha \) can be easily determined through this process. We used data for the identification procedure from the experiment in Section V-A, where the translational acceleration \(\ddot{x} \) is zero. Thus only the gyro \(\omega_g \) and inclinometer measurements \(\theta_t \) are used in the identification; however once identified, the inclinometer dynamics are used in the observer \(\hat{\theta} \) in all situations, where \(\ddot{x} \) might not be zero (experiments in Sections V-B and V-C.) The measured signals \(\omega_g \) and \(\theta_t \) are produced by applying a chirp input as discussed in Section II-A. Over the time horizon \(T = 107 \) sec with a sampling frequency \(f = 500Hz \), we collected \(N = 53501 \) samples. We then computed the Discrete Fourier Transforms (DFT) of \(\omega_g(kT_p) \) and \(\theta_t(kT_p) \), \(k = 0, \ldots, 53500 \), where \(T_p = 1/f = 0.002sec \) using MATLAB’s fft command. Finally, we obtained samples of the frequency response \(G(jk\Omega_p) \), \(k = 0, \ldots, 53500 \) of integrator/inclinometer combination in Figure 6 as the ratio of the DFT of \(\theta_t \) (output) to the DFT of \(\omega_g \) (input—since we assume for now \(\omega = \omega_g \)), where \(\Omega_p = \frac{2\pi}{T_p} = 0.0093 \) rad/sec.

We should remark that a number of factors contribute to errors in the estimation of the samples \(G(jk\Omega) \). First, since the chirp input has its power over frequencies from \(0.25Hz \) to \(4.6Hz \), we can expect to be able to reliably identify the frequency range from about \(0.2Hz \) to \(5Hz \). Then, errors may be introduced because of aliasing and leakage [12]. Aliasing results if the sampling frequency is less than twice the highest frequency in the signal being sampled. However, we do not expect aliasing to be an issue since we used an anti-aliasing filter with a cutoff frequency of \(50Hz \). This means that our sampling rate of \(500Hz \) is 10 times higher than the expected bandwidth of the measured signals. Leakage refers to the ripple-like effect in the frequency response obtained from using (out of practical necessity) the Fourier transformation on time-domain data over a finite horizon instead of an infinite one. It can be reduced by increasing \(N \), or by using windowing filters at the expense of “smearing” the frequency response [12]. Indeed, since we did not employ any data windowing, some rippling in the frequency samples can be observed but the curve fitting approach employed to obtain the transfer function from the samples \(G(jk\Omega_p) \) tends to smooth out this effect.

Next, the experimental frequency response curve (samples \(G(jk\Omega(j)) \)) is fitted with a rational transfer function by minimizing a least squares criterion:

\[
\min_{\alpha, \beta} \sum_{i=1}^{N_1} w_1 \left| G(j\Omega_i) - \frac{\beta_0(j\Omega_i)^m + \beta_1(j\Omega_i)^{m-1} + \cdots + \beta_m}{(j\Omega_i)^n + \alpha_1(j\Omega_i)^{n-1} + \cdots + \alpha_n} \right|^2
\]

with \(k = 1, \ldots, n \) and \(l = 0, \ldots, m \) and where \(n, m \) are the number of poles and zeros respectively of the model selected by the user. Also in (6), the \(w_1 \)'s are weights that are selected to emphasize certain frequencies such as those where the experimental data show resonances/notches (see Figure 7.) We employed a recursive algorithm reported in [13], but with using a parametrization of the numerator and denominator polynomials of the fit in terms of Chebychev polynomials [14], [15]; the Chebychev parametrization alleviates the numerical difficulties that the standard parametrization in (6) can suffer from because of an extended frequency range and/or high polynomial orders \(n \), \(m \). As discussed above, we took \(N_1 \) and \(N_2 \) in (6), to fit the available data from \(0.2Hz \) to \(5Hz \). Furthermore, we scaled the experimental frequency response samples \(G(j\Omega_i) \) by \(j\Omega_i \) before curve-fitting was attempted so that the resulting transfer function describes exactly the inclinometer dynamics in (1); this scaling in effect corresponds to scaling \(G(s) \), the integrator/inclinometer transfer function, by \(s \), thus cancelling the integrator in the measured frequency response between \(\omega \) and \(\theta_t \) in Figure 6.

We now remark on why the gyro bias \(\delta \) does not affect this procedure, and how the scaling \(\alpha \) can be accurately determined. First note that the bias introduces a delta function at \(s = 0 \) in the frequency response and that curve-fitting is attempted from \(0.2Hz \) to \(5Hz \) so that the bias has no effect on the identification. Then, note that \(\alpha \) has the effect of scaling the experimental frequency response and the curve-fit. Since it is known that the dc-gain of the inclinometer is 1, we simply identify \(\alpha \) as the scaling required to make the resulting curve-fit have a dc-gain of 1.

Figure 7 shows the best-fit transfer functions of varying degrees, starting with 1 pole and no zeros (top left), 2 pole and no zeros (top right), and 2 poles and 2 zeros (bottom). Note that the first order model, seen in Figure 7, is a good fit from about 0.3 Hz to about 2 Hz, but misses the notch apparent in the data at approximately 3.7 Hz. The bottom plot in the figure shows an excellent fit within the 0.2 to 5 Hz range, with identified transfer function

\[
G_p(s) = \frac{1.024s^2 - 0.1791s + 528.4}{s^2 + 65.86s + 528.4}.
\]

Our identified observer parameters are \(\alpha_1 = 65.86 \), \(\alpha_2 = 528.4 \) and \(\beta_0 = 1.024 \) and \(\beta_1 = -0.1791 \). As described previously, \(\beta_2 \) was forced to equal to \(\alpha_2 \) so that the DC-gain of the inclinometer is one. We observe, that \(G_p(s) \) is consistent with (1), less small differences in the high frequency-gain and the small damping in the numerator (i.e. \(\beta_0 = 1.024 \) and \(\beta_1 = -0.1791 \) instead of the ideal modeling values \(\beta_0 = 1 \) and \(\beta_1 = 0 \).) We also remark that the natural frequency of the zeros of the model is \(\frac{528.4}{2\pi} \approx 3.66Hz \), well within the range of device, which shows the importance of using the more accurate model. Finally, the gyro scaling is also identified to have a value of \(\alpha = 0.76 \) based on the approach discussed above.

V. EXPERIMENTAL RESULTS

A. Planar Rotation

We first tested the observer design from Subsection III on the case of pure rotation of the tilt sensor with zero base acceleration. The tilt sensor was mounted along the axis of rotation as shown in Figure 3. The data from the same chrip
signal used for the system identification in Subsection IV was input into the observer, and the tilt angle estimate was compared to the measured tilt angle. Figure 8 shows the estimated tilt and the actual angle at low and high frequencies. For the initial conditions, we set the estimated angle to be close to the actual angle, but introduced a significant error in the initial estimate for the gyro bias signal. This error caused the observed angle to deviate from the true angle during the first few seconds of the estimator’s transient response. The last 5 seconds of the chirp motion show our observer tracking a signal of frequencies exceeding 4 Hz. Figure 9 shows the estimate of the gyro bias signal to converge to a value of $\delta = -2.74$ deg/sec in about 4 seconds. It also shows that the observed bias signal varies somewhat during normal operation.

B. Horizontal Translation

The results seen in Figure 8 are valid for the case when the inclinometer rotates without translating. The following experiments introduce translational acceleration to the inclinometer. For the first experiment, we fixed the inclinometer and an accelerometer to a sliding platform oriented to move in the horizontal direction as shown in Figure 10. Using a pneumatic actuator, we accelerated and decelerated the platform in a square wave with ($\ddot{x} = \pm a$,) creating a smooth back and forth motion (see the translational motion shown in the lower plots of Figure 11.) Ideally, the observer should output a tilt angle estimate of zero degrees since the inclinometer is not rotating. In Figure 11 we plot the inclinometer output, the tilt angle estimate assuming that the acceleration is zero, and the tilt angle estimate using the measured acceleration signal. In both cases of low and high acceleration, the angle estimate was roughly 10 times as accurate than the angle estimate based...
C. Translation and Rotation

In the last experiment, we used the original test setup shown in Figure 3, with the tilt sensor placed 10 cm from the axis of rotation. As before, the device was oscillated in a chirp motion around the 70° (from horizontal) position. This motion created accelerations on the order of 1 g in both the x- and y-directions. The accelerations were due to the angular velocity and angular acceleration of the rotating arm. Rather than using the accelerometer, we computed the linear acceleration of the tilt sensor from the measured encoder signal and its derivatives. Data from all three sensors was fed to the observer, giving the results seen in Figure 12. The plots show that at both low (< 1Hz) and high frequencies (> 3Hz), the estimated signal deviates from the actual signal by no more than 1 degree. This result shows that satisfactory performance of the observer is obtained even in the case when considerable translational accelerations are present in both the x- and y-directions.

VI. CONCLUSION

We have outlined a method for combining data from an inclinometer, a rate gyro, and an accelerometer to produce an accurate angle measurement, even when translational accelerations are substantial. This method involves modelling the sensors as linear time-invariant systems. The rate gyro is modelled as the derivative of the angle to be estimated, plus an unknown bias and scaling. The tilt sensor is modelled as a second-order proper transfer function from the input angle to the tilt sensor output angle. The parameters of this transfer function are obtained by fitting its frequency response to the experimental frequency response of the tilt sensor to a chirp motion. Then, an optimal linear state estimator is constructed that estimates the gyro bias, and infers the correct angle from the output of all three sensors. Our method is unique in that it cancels the gyro bias more effectively than a simple high-pass filter. Furthermore, our more realistic model of the inclinometer allows for state observation at higher frequencies than has been reported in previous research.

REFERENCES

Fig. 8. Observer designed from tilt sensor transfer function, 2 poles and 2 zeros (left–first 15 sec, right–last 5 sec).

Fig. 10. Experimental setup for horizontal translation.
Fig. 11. Angle estimate as sensor accelerates with $\ddot{x} = \pm 0.98 \text{ m/s}^2$, (left) and with $\ddot{x} = \pm 9.8 \text{ m/s}^2$ (right).

Fig. 12. Observer designed from tilt sensor transfer function, with inclinometer placed off the axis of rotation (left–first 15 sec, right–last 5 sec).

John Leavitt

John Leavitt received the M.S. degree in Mechanical and Aerospace Engineering from the University of California, Irvine, in September 2003, where he is currently working on the Ph.D. degree in the same field. His research interests include state estimators, fluid powered robots and semi-active dampers for use with building structures.

Athanasios Sideris

Athanasios Sideris received the Diploma in Electrical and Mechanical Engineering in 1980 from the National Technical University of Athens, Greece, the M.S. degree in Mathematics in 1986 and the M.S. and Ph.D. degrees in Electrical Engineering in 1981 and 1985 respectively from the University of Southern California, Los Angeles, CA. From 1986 to August 1992, he was with the Department of Electrical Engineering of the California Institute of Technology as an Assistant Professor. Since January 1992, he has been with the Department of Mechanical and Aerospace Engineering at the University of California, Irvine, where he is currently Professor. His current research interests are in robust control theory, optimization and optimal control, learning algorithms and neural networks.

James E. Bobrow

James E. Bobrow is a Professor of Mechanical and Aerospace Engineering at the University of California, Irvine. He received his M.S. and Ph.D. degrees in Engineering from the University of California, Los Angeles, Mechanics and Structures Department in 1983. His Ph.D. Thesis was on the optimal control of robotic manipulators. From 1983-1984 Prof. Bobrow was a senior programmer analyst at McDonnell Douglas Automation Company, where he developed CAM software for the Unigraphics system. In July 1984, Dr. Bobrow joined UCI as an assistant professor, where he conducted research in robotics and applied control systems. In the '91-'92 academic year, Dr. Bobrow was a Visiting Associate Professor in the Computer Science Department at Stanford University, where he investigated applications of numerical optimization algorithms to learning systems. He has created robots and automation devices for several start-up companies, including Robomedica, Inc. and Cobra Technologies. He serves on the Engineering advisory board of Robomedica, Inc., and he has served on the program committees or organizing committees of the leading conferences in control systems and robotics.