Lecture: January 26

• Chapter 3: continued
 – Writing equations of motion:
 • F=ma
 • K_{eq}, M_{eq}, C_{ed}: find the kinetic (or potential) energy and set it to $\frac{1}{2} M_{eq} v^2$ ($1/2 \ K_{eq} x^2$). For C_{eq}: match power loss: $C_{eq} v^2$
 • Raligh’s methods (to get natural frequency only)
 • Energy methods: if energy is conserved: then derivative of total mechanical energy is zero. If not, the derivative is net power in (work in minus power taken out by damping): Applied to example 3.7.6
January 26

• Chapter 4:
 – Forcing function = $F_o \sin \omega t$: solving via Laplace Transform: solve for the steady state condition
January 28

• Chapter 4:
 – Transfer function definition (see class handout chapter 4)
 – Getting steady state based on transfer function
 – Dimensionless form (pp 212-213), ratio of peak displacement to static deflection, plots on pp 214 (peak values, how to guess the shape, etc)
 – Section 4.2: Beating, Resonance and Bandwidth
 – Instrument design (page 223-225)vibrometer vs accelerometer